Orthogonal matrix

A n×nn \times n matrix 𝐀\mathbf{A} is an orthogonal matrix if $$\mathbf{AA}^{\sf T} = I$$ where $\mathbf{A}^{\sf T}$ is the transpose of 𝐀\mathbf{A} and 𝐈\mathbf{I} is the identity matrix.

Orthogonal matrices are always invertible, $$\mathbf{A}^{-1} = \mathbf{A}^{\sf T}$$

The rows of an orthogonal matrix form an orthonormal basis.


References:

  1. https://mathworld.wolfram.com/OrthogonalMatrix.html
  2. https://www.ucl.ac.uk/~ucahmdl/LessonPlans/Lesson10.pdf